Extensions 1→N→G→Q→1 with N=C32xD5 and Q=C22

Direct product G=NxQ with N=C32xD5 and Q=C22
dρLabelID
D5xC62180D5xC6^2360,157

Semidirect products G=N:Q with N=C32xD5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C32xD5):C22 = S32xD5φ: C22/C1C22 ⊆ Out C32xD5308+(C3^2xD5):C2^2360,137
(C32xD5):2C22 = S3xC6xD5φ: C22/C2C2 ⊆ Out C32xD5604(C3^2xD5):2C2^2360,151
(C32xD5):3C22 = C2xD5xC3:S3φ: C22/C2C2 ⊆ Out C32xD590(C3^2xD5):3C2^2360,152

Non-split extensions G=N.Q with N=C32xD5 and Q=C22
extensionφ:Q→Out NdρLabelID
(C32xD5).1C22 = C3xS3xF5φ: C22/C1C22 ⊆ Out C32xD5308(C3^2xD5).1C2^2360,126
(C32xD5).2C22 = C3:S3xF5φ: C22/C1C22 ⊆ Out C32xD545(C3^2xD5).2C2^2360,127
(C32xD5).3C22 = S3xC3:F5φ: C22/C1C22 ⊆ Out C32xD5308(C3^2xD5).3C2^2360,128
(C32xD5).4C22 = C3:F5:S3φ: C22/C1C22 ⊆ Out C32xD5308+(C3^2xD5).4C2^2360,129
(C32xD5).5C22 = C2xC32:3F5φ: C22/C2C2 ⊆ Out C32xD590(C3^2xD5).5C2^2360,147
(C32xD5).6C22 = C6xC3:F5φ: C22/C2C2 ⊆ Out C32xD5604(C3^2xD5).6C2^2360,146
(C32xD5).7C22 = C3xC6xF5φ: C22/C2C2 ⊆ Out C32xD590(C3^2xD5).7C2^2360,145

׿
x
:
Z
F
o
wr
Q
<